

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS

PRODUCT SPECIFICATION 規格書

CUSTOMER: DATE:

(客戶): (日期):2014-10-22

CATEGORY (品名) : ALUMINUM ELECTROLYTIC CAPACITORS

DESCRIPTION (型号) : KM 400V100μF(φ18x25)

VERSION (版本) : 01

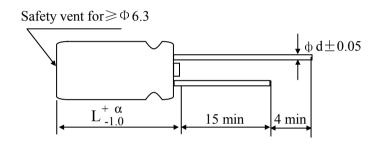
Customer P/N :

SUPPLIER :

SUPPLIER							
PREPARED (拟定)	CHECKED (审核)						
黄逸	旲仁奎						

CUSTOMER						
APPROVAL (批准)	SIGNATURE (签名)					

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES


		SPECIFICAT	ALTERN. R	ATION HIST	ΓORY				
Rev.					Purpose Drafter Approver				
					•				

Name		Specification Sheet – KM				
Version	01		Page	1		
STANDARD MANUAL						

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

Table 1 Product Dimensions and Characteristics

α	L<20 : α=1.5; L≥20 : α=2.0
β	$\Phi D < 20 : \beta = 0.5; \ \Phi D \ge 20 : \beta = 1.0$

* If it is flat rubber, there is no bulge from the flat rubber surface.

Unit: mm

Table 1

No	SAMXON Part No.	WV (Vdc)	Cap.	Cap. tolerance	Temp. range(°C)	tan δ (120Hz,	Leakage Current	Max Ripple Current at 105℃ 120Hz	Load lifetim e	(ension mm)		Sleeve
•	Ture ivo.	(,,,,,	(μ1)		runge(o)	20℃)	(µA,2min)	(mA rms)	(Hrs)	$D \times L$	F	фd	
1	EKM107M2GL25RR**P	400	100	-20%~+20%	-25~105	0.24	1240	450	2000	18X25	7.5	0.8	PET

Issued-date: 2014-10-22		Specification Sheet – KM						
Version	01		Page	2				
	STANDARD MANUAL							

4.12 Resistance to solder heat4.13 Change of temperature

4.16 Maximum permissible (ripple current)

Attachment: Application Guidelines

4.14 Damp heat test

6. Taping Dimension

Substances')"

5. Forming Dimension

4.15 Vent test

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

CONTENTS

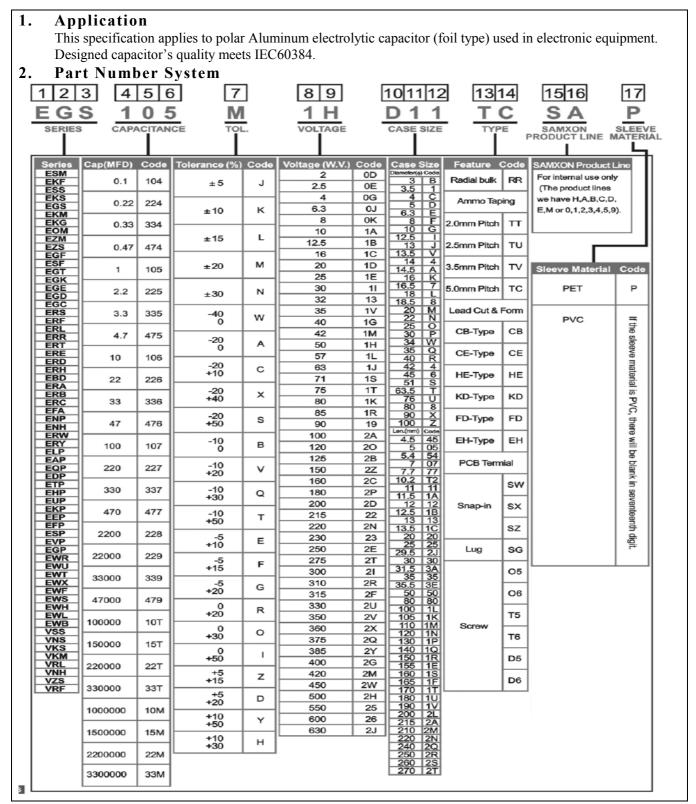
SAMXON

14

15~17

18

19~24

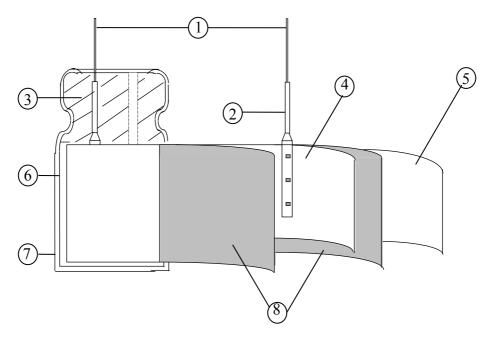

Sheet Application 1. 2. Part Number System 4 3. Construction 5 4. Characteristics 6~13 4.1 Rated voltage & Surge voltage 4.2 Capacitance (Tolerance) 4.3 Leakage current 4.4 $tan \delta$ 4.5 Terminal strength 4.6 Temperature characteristic 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test

Name		Specification Sheet – KM		
Version	01		Page	3

STANDARD MANUAL

7. List of "Environment-related Substances to be Controlled ('Controlled

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES


Name		Specification Sheet – KM					
Version	01		Page	4			
STANDARD MANUAL							

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

No	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	PVC/PET
8	Separator	Electrolyte paper

Name		Specification Sheet – KM				
Version	01		Page	5		
STANDARD MANUAL						

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are

as follows:

Ambient temperature :15°C to 35°C Relative humidity : 45% to 85% Air Pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature : $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air Pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Name		Specification Sheet – KM					
Version	01		Page	6			
STANDARD MANUAL							

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

Table		<u> </u>			- DEI	NEOD:					
	ITEM				PEI	RFOR	MANCE	<u> </u>			
	Rated voltage (WV)	WV (V.DC) SV (V.DC)	6.3	10		6	25 32	35 44	50 63	63 79	100 125
4.1	Surge voltage (SV)	WV (V.DC) SV (V.DC)	160	200 250	220 270	250 300		400	420 470	450 500	
4.2	Nominal capacitance (Tolerance)	Measuring F Measuring V Measuring T <criteria></criteria>	Condition> Measuring Frequency : 120Hz±12Hz Measuring Voltage : Not more than 0.5Vrms Measuring Temperature : 20±2℃ Criteria> Shall be within the specified capacitance tolerance.								
4.3	Leakage current	Connecting the capacitor with a protective resistor $(1k\Omega \pm 10\Omega)$ in series for 2 minutes, and then, measure Leakage Current. Criteria> Refer to Table 1									
4.4	tan δ	See 4.2, Nor	Condition> See 4.2, Norm Capacitance, for measuring frequency, voltage and temperature. Criteria> Refer to Table 1								

Name		Specification Sheet – KM		
Version	01		Page	7
	STA	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

4.5 Terminal strength		Tensile Strength of Terminals Fixed the capacitor, applied force to the terminal in lead out direction for 10 ± 1 seconds. Bending Strength of Terminals. Fixed the capacitor, applied force to bent the terminal (1~4 mm from the rubber) for 90° within 2~3 seconds, and then bent it for 90° to its original position within 2~3 seconds. Diameter of lead wire Tensile force N (kgf) (kgf) (kgf) 0.5mm and less 5 (0.51) 2.5 (0.25) Over 0.5mm to 0.8mm 10 (1.0) SCriteria>							
		Criteria> No noticeable changes shaded <condition> STEP Testing Tempor 1 20± 2 -40(-25) 3 20± 4 105±</condition>	erature($^{\circ}$ C) 2 Time to ± 3 Time to 2 Time to	Time reach thermal equilibrium reach thermal equilibrium reach thermal equilibrium					
4.6	Temperature characteristics	5 $20\pm$ Criteria> a. $\tan \delta$ shall be within the	Time to Time to Time to Time to	reach thermal equilibrium than 8 times of its specified					

Name		Specification Sheet – KM		
Version	01		Page	8
	STA	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

		Working Voltage (V)	6.3	10	16	25	35	50)	63				
		Z-25°C/Z+20°C	5	4	3	2	2	2		2				
		Z-40°C/Z+20°C	10	8	6	4	3	3		3				
				•			•							
4.6		Working Voltage (V)	100	160~22	250	~350	400~42	20 4	150					
		Z-25°C/Z+20°C	2	3	4	4	6		15					
		Z-40°C/Z+20°C	3		-									
		For capacitance value >	1000 µ F		•									
		Capacitance, tan δ , and	impedano) per anot e measure			r Z- 40℃	C/ Z +2	0℃.				
		<condition></condition>												
		According to IEC60384				-								
		at a temperature of 105												
		2000 +48/0 hours. (The												
		working voltage) Then							ering ti	ıme a				
	Load	atmospheric conditions. < Criteria >	. The resu	iit snouid	meet the	IOHOW	ing table	:						
4.7	life	The characteristic shall meet the following requirements.												
	test	Leakage current Value in 4.3 shall be satisfied												
		Capacitance Change			% of initi									
		tan δ			n 200% c			value.						
		Appearance			e no leak									
		11												
		<condition></condition>												
		The capacitors are then s	stored wit	h no volta	age applie	ed at a t	temperati	are of 1	05 ± 2	$^{\circ}$ C fo				
		1000+48/0 hours.												
		Following this period th					om the te	st chan	nber a	nd b				
		allowed to stabilized at r					11-+ 100	O) swith	, D.C	roto				
					_	Next they shall be connected to a series limiting resistor($1k \pm 100 \Omega$) with D.C. rativoltage applied for 30min. After which the capacitors shall be discharged, and the								
				which th			an oc an	charge	u, unu	tilei				
	Shelf			which th	ie capacii									
4.8	Shelf life	tested the characteristics <criteria></criteria>		which th	ie capacii									
4.8		tested the characteristics												
4.8	life	tested the characteristics <criteria></criteria>	neet the f	Collowing e in 4.3 sł	requirem	ents.								
4.8	life	tested the characteristics <criteria> The characteristic shall r</criteria>	neet the f	Collowing e in 4.3 sł	requirem	ents.								
4.8	life	tested the characteristics <criteria> The characteristic shall r Leakage current</criteria>	neet the f	Collowing to in 4.3 shin ±20%	requirem	ents. isfied l value.		lue.						

Name		Specification Sheet – KM						
Version	01		Page	9				
	STANDARD MANUAL							

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

4.9 Surge test	Condition> Applied a surge voltage to the capacitor connected with a (100 ±50)/C _R (kΩ) resistor. The capacitor shall be submitted to 1000 cycles, each consisting of charge of 30 ±5s, followed discharge of 5 min 30s. The test temperature shall be 15~35℃. C _R :Nominal Capacitance (μ F) Criteria> Leakage current Not more than the specified value. Capacitance Change Within ±15% of initial value. It is Not more than the specified value. Appearance There shall be no leakage of electrolyte. Attention: This test simulates over voltage at abnormal situation only. It is not applicable to such over voltage as often applied.
4.10 Vibration test	Condition> The following conditions shall be applied for 2 hours in each 3 mutually perpendicular directions. Vibration frequency range : 10Hz ~ 55Hz Peak to peak amplitude : 1.5mm Sweep rate : 10Hz ~ 55Hz ~ 10Hz in about 1 minute Mounting method: The capacitor with diameter greater than 12.5mm or longer than 25mm must be fixed in place with a bracket. Within 30° Amm or less Within 30°

Name		Specification Sheet – KM		
Version	01		Page	10
	STA	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

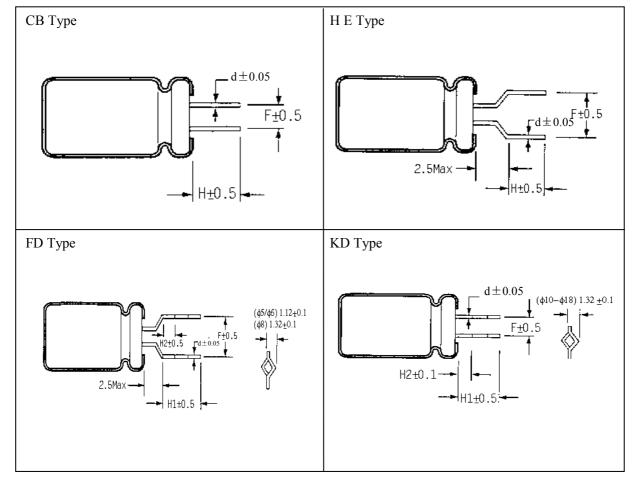
Appearance No damage of tab terminals or electrodes.				ring items shall be tested: No intermittent contacts, open or short circuiting.						
Appearance of electrolyte or swelling of the case. The markings shall be legible. **Condition>** The capacitor shall be tested under the following conditions: Soldering temperature : 245±3°C Dipping depth : 2mm Dipping speed : 25±2.5mm/s Dipping time : 3±0.5s **Criteria>** Coating quality A minimum of 95% of the surface being immersed **Condition>** Terminals of the capacitor shall be immersed into solder bath at 260±5°C for 10±1 seconds or 400±10°C for 3 ** seconds to 1.5~2.0mm frow the body of capacitor. Then the capacitor shall be left under the normal temperature and normal humidity for 1~2 hours before measurement. **Criteria>** Leakage current Not more than the specified value. Capacitance Change Within ±10% of initial value. tan δ Not more than the specified value.			Inner construction							
The capacitor shall be tested under the following conditions: Soldering temperature : 245±3°C Dipping depth : 2mm Dipping speed : 25±2.5mm/s Dipping time : 3±0.5s Criteria> Coating quality A minimum of 95% of the surface being immersed Coating quali			Appearance	No mechanical damage in terminal. No leakage of electrolyte or swelling of the case.						
Soldering temperature : 245±3°C Dipping depth : 2mm Dipping speed : 25±2.5mm/s Dipping time : 3±0.5s Criteria> Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum										
Dipping depth Dipping speed Di										
Dipping speed Dipping speed Dipping time Dipping speed Dipping time Dipping speed Di		ı	• •							
A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality Coating quality A minimum of 95% of the surface being immersed into solder bath at 260±5°C for 10±1 seconds or 400±10°C for 3 +1/-0 seconds to 1.5~2.0mm frof the body of capacitor. Then the capacitor shall be left under the normal temperature and normal humidity for 1~2 hours before measurement. Coating quality Coating quality Coating quality Not more than the specified value. Capacitance Change Within ±10% of initial value. In the capacitor shall be left under the normal temperature and normal humidity for 1~2 hours before measurement. Coating quality Not more than the specified value. Not more than the specified value.		ı								
4.11 Solderability test Coating quality A minimum of 95% of the surface being minmersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating Coating Quality A minimum of 95% of the surface being coating Coating Parameters and 1.5 Coating Paramet										
Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed Coating quality A minimum of 95% of the surface being immersed at 260 \pm 5° Cfor10 \pm 1seconds or 400 \pm 10° Cfor3 $_{-0}^{+1}$ seconds to 1.5~2.0mm frow the body of capacitor. Then the capacitor shall be left under the normal temperature and normal humidity for 1~2 hours before measurement. Criteria> Criteria> Leakage current Not more than the specified value. Capacitance Change Within \pm 10% of initial value. $\tan \delta$ Not more than the specified value.		ı	Dipping time	: 3±0.5s						
Coating quality A minimum of 95% of the surface being immersed Condition Terminals of the capacitor shall be immersed into solder bath at 260 ± 5 °C for 10 ± 1 seconds or 400 ± 10 °C for 3^{+1}_{-0} seconds to $1.5 \sim 2.0$ mm frow the body of capacitor. Then the capacitor shall be left under the normal temperature and normal humidity for $1 \sim 2$ hours before measurement. 4.12 Resistance to solder heat test Capacitance Change Within $\pm 10\%$ of initial value. Lakage current Capacitance Change Within $\pm 10\%$ of initial value. Not more than the specified value.	4.11	=	<criteria></criteria>	<criteria></criteria>						
Condition> Terminals of the capacitor shall be immersed into solder bath at $260\pm5^{\circ}\text{C}$ for 10 ± 1 seconds or $400\pm10^{\circ}\text{C}$ for 3^{+1}_{-0} seconds to $1.5\sim2.0$ mm frow the body of capacitor . Then the capacitor shall be left under the normal temperature and normal humidity for $1\sim2$ hours before measurement. Resistance to solder heat test Capacitance Change Within $\pm10\%$ of initial value. Lan δ Not more than the specified value.		test		A minimum of 95% of the surface being						
Terminals of the capacitor shall be immersed into solder bath at $260\pm5^{\circ}\mathrm{C}$ for 10 ± 1 seconds or $400\pm10^{\circ}\mathrm{C}$ for 3^{+1}_{-0} seconds to $1.5\sim2.0$ mm from the body of capacitor . Then the capacitor shall be left under the normal temperature and normal humidity for $1\sim2$ hours before measurement. **Criteria** Leakage current Not more than the specified value. Capacitance Change Within $\pm10\%$ of initial value. $\tan\delta$ Not more than the specified value.										
the body of capacitor . Then the capacitor shall be left under the normal temperature and normal humidity for $1\sim2$ hours before measurement. **Criteria** Leakage current										
Then the capacitor shall be left under the normal temperature and normal humidity for $1\sim2$ hours before measurement. *Criteria> Leakage current Not more than the specified value. Capacitance Change Within $\pm 10\%$ of initial value. $\tan \delta$ Not more than the specified value.			Terminals of the capacito							
4.12 Solder heat test Leakage current Not more than the specified value. Capacitance Change Within $\pm 10\%$ of initial value. $\tan \delta$ Not more than the specified value.			Terminals of the capacito 260 ± 5 °C for 10 ± 1 secon							
test Capacitance Change Within $\pm 10\%$ of initial value. tan δ Not more than the specified value.			Terminals of the capacitor 260 ± 5 °C for 10 ± 1 second the body of capacitor. Then the capacitor shall 100	ds or 400 ± 10 °C for 3^{+1}_{-0} seconds to $1.5 \sim 2.0$ mm from the left under the normal temperature and normal						
tan δ Not more than the specified value.		Resistance to	Terminals of the capacitor $260\pm5^{\circ}\text{C}$ for $10\pm1\text{secon}$ the body of capacitor . Then the capacitor shall humidity for $1\sim2$ hours b	ds or $400 \pm 10^{\circ}$ C for 3^{+1}_{-0} seconds to $1.5 \sim 2.0$ mm from the left under the normal temperature and normal before measurement.						
	4.12	solder heat	Terminals of the capacitor 260±5°C for 10±1 second the body of capacitor. Then the capacitor shall humidity for 1~2 hours book second the capacitor shall humidity for 1~2 hours book second the capacitor shall humidity for 1~2 hours book second the capacitor shall humidity for 1~2 hours book second the capacitor shall humidity for 1~2 hours book second the capacitor shall have been second to be second to	ds or $400 \pm 10^{\circ}$ C for 3^{+1}_{-0} seconds to $1.5 \sim 2.0$ mm from the left under the normal temperature and normal before measurement.						
A	4.12	solder heat	Terminals of the capacitor 260±5°C for 10±1 second the body of capacitor. Then the capacitor shall humidity for 1~2 hours book second the capacitor shall humidity for 1~2 hours book second the capacitor shall humidity for 1~2 hours book second the capacitor shall humidity for 1~2 hours book second the capacitor shall humidity for 1~2 hours book second the capacitor shall have been second to be second to	ids or $400 \pm 10^{\circ}$ C for 3^{+1}_{-0} seconds to $1.5 \sim 2.0$ mm from the left under the normal temperature and normal perfore measurement.						
Appearance There shall be no leakage of electrolyte.	4.12	solder heat	Terminals of the capacitor 260±5°C for 10±1 second the body of capacitor. Then the capacitor shall humidity for 1~2 hours book second to the capacitor shall humidity for 1~2 hours book second to the body of capacitars book second to the capacitar had been second	hds or $400 \pm 10^{\circ}$ C for 3^{+1}_{-0} seconds to $1.5 \sim 2.0$ mm from the left under the normal temperature and normal perfore measurement. Not more than the specified value. Within $\pm 10\%$ of initial value.						

Name		Specification Sheet – KM						
Version	01		Page	11				
	STANDARD MANUAL							

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

		Temperature Cycle: According to IEC60384-4No.4.7methods, capacitor shall be placed in an oven, the condition according as below:						
		Temperature Time						
		$(1)+20^{\circ}C \qquad \leqslant 3 \qquad \text{Minutes}$						
		(2)Rated low temperature (-40°C) (-25°C) 30 ± 2 Minutes						
		(3)Rated high temperature (+105°C) 30 ± 2 Minutes (1) to (3)=1 cycle, total 5 cycle						
4.13	Change of temperature test	Criteria> The characteristic shall meet the following requirement Leakage current Not more than the specified value. tan δ Not more than the specified value. Appearance There shall be no leakage of electrolyte.						
		<condition> Humidity Test: According to IEC60384-4No.4.12 methods, capacitor shall be exposed for 500±8 hours in an atmosphere of 90~95%R H .at 40±2°C, the characteristic change shall meet the following requirement.</condition>						
4.14	Damp heat test							

Name		Specification Sheet – KM					
Version	01		Page	12			
STANDARD MANUAL							


ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

		≥Ø6.3 with ver D.C. test The capacitor i a current selec <table 3=""></table>	s connected with its potential from below table is	olarity re	eversed	-		
4.15	Vent test	Diameter (m 22.4 or les						
1.13	test	Over 22.4	10					
			operate with no danger e capacitor and/or case		ditions	such as	flames o	or dispersio
		at 120Hz and of Table-1 The combined the rated voltage of the Table Trequency More at 120Hz and of the Table	permissible ripple curr can be applied at maxing value of D.C voltage and shall not revers	mum op	erating peak A	tempera	ature	
	Maximum	Rated Voltage (V)	Coefficient Freq. (Hz)	50	120	300	1k	10k~
4.16	permissible (ripple		~47	0.75	1.00	1.35	1.57	2.00
4.10	current)	6.3~100	68~470	0.80	1.00	1.23	1.34	1.50
			≥560	0.85	1.00	1.10	1.13	1.15
		160~450	0.47~220 ≥270	0.80	1.00	1.25	1.40	1.60
			>210	0.70	1.00	1.10	1.13	1.13

Name		Specification Sheet – KM						
Version 01			Page	13				
	STANDARD MANUAL							

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

Forming Dir	nension						τ	Jnit: mm
Shape Code	φD	ф5	ф 6.3	ф8	ф 10	ф 12.5	Ф16	ф 18
	F	2.0	2.5	3.5	5.0	5.0	7.5	7.5
СВ	Н	3.5	3.5	3.5	3.5	3.5	3.5	3.5
СВ	d	0.5	0.5	0.5	0.6	0.6	0.8	0.8
	F	5.0	5.0	5.0				
HE	Н	5.0	5.0	5.0				
ΠE	d	0.5	0.5	0.5				
	F	5.0	5.0	5.0				
	H1	4.5	4.5	4.5				
FD	H2	2.0	2.0	2.0				
ID	d	0.5	0.5	0.5				
	F				5.0	5.0	7.5	7.5
	H1				4.5	4.5	4.5	4.5
KD	H2				2.0	2.0	2.0	2.0
	d				0.6	0.6	0.8	0.8

Name		Specification Sheet – KM							
Version 01			Page	14					
	STANDARD MANUAL								

6. Taping Specification

Fig-1 ϕ 5 F=2.5mm(TU);

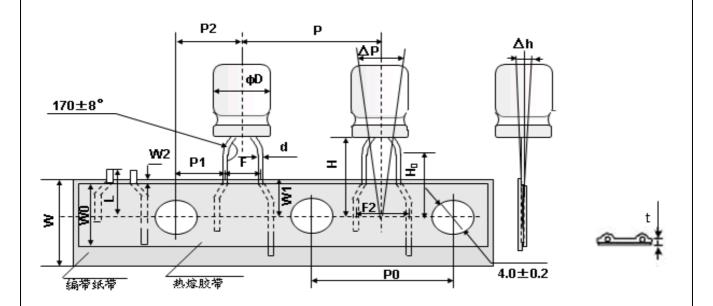
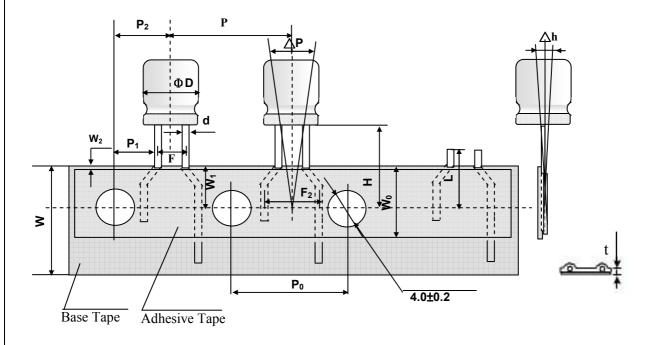
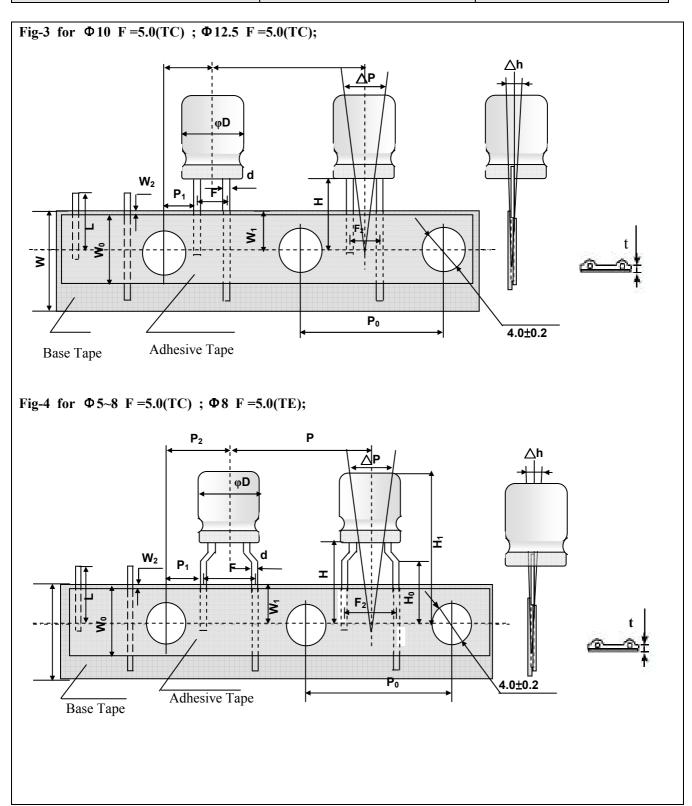
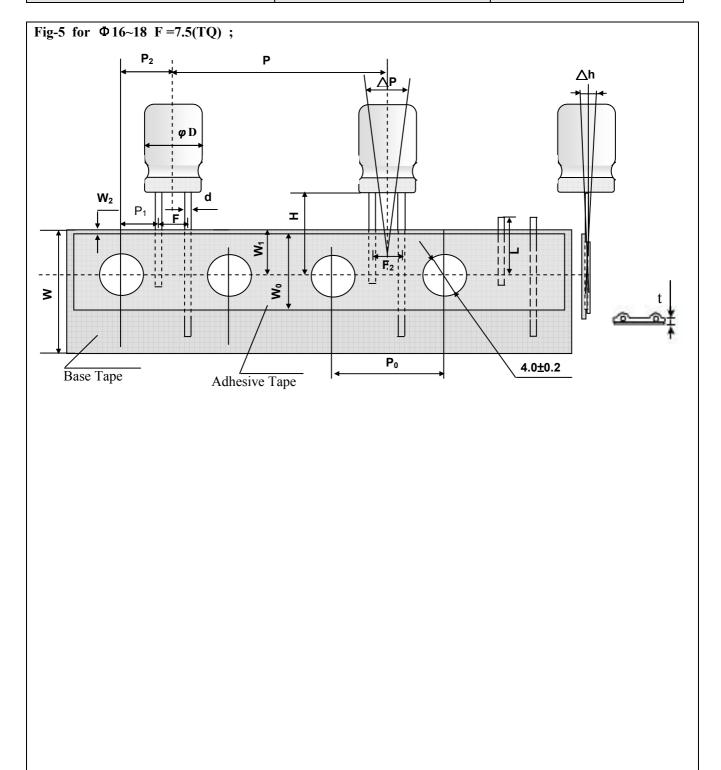




Fig-2 for $\Phi 5$ F =2.0(TT); $\Phi 6.3$ F =2.5(TU); $\Phi 8x5$ F =2.5(TU); $\Phi 8x7 \sim 20$ F=3.5mm(TV)



Name		Specification Sheet – KM					
Version	01		Page	15			
STANDARD MANUAL							

Name		Specification Sheet – KM						
Version	Version 01		Page	16				
	STANDARD MANUAL							

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

Name		Specification Sheet – KM						
Version 01			Page	17				
STANDARD MANUAL								

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

Remark: Maximum Tapin		nsion: 18mm Diameter Unit: mr								.1111	
Item	Code	TT	Т	U	TV		TC	7		TE	TQ
Diameter	D	5	5	6.3	8	5 / 6.3	8	10	12.5	8	16/18
Height	A	5~15	9~15	9~15	10~20	9~15	10~20	9~30	15~35	10~20	15~4
Lead Diameter	d±0.05	0.45/0.5	0.5	0.5	0.5	0.5	0.5/0.6	0.6	0.6	0.5/0.6	0.8
Component Spacing	P±1.0	12.7	12.7	12.7	12.7	12.7	12.7	12.7	15	12.7	30
Pitch of sprocket holes	P ₀ ±0.2	12.7	12.7	12.7	12.7	12.7	12.7	12.7	15	12.7	15
Distance between centers of terminal	P ₁ ±0.5	5.1	5.1	5.1	4.6	3.85	3.85	3.85	5.0	3.85	3.75
Feed hole center to component center	P ₂ ±1.0				6.35				7.5	6.35	7.5
Distance between centers of component leads	$F_{-0.5}^{+0.8}$	2.0	2.5	2.5	3.5	5.0	5.0	5.0	5.0	5.0	7.5
Distance between centers of component leads Adhesive Tape cover	$F_{2}^{+0.8}_{-0.5}$	3.5	2.5	3.5	5.0	5.0	5.0	5.0	5.0	5.0	7.5
Carrier tape width	$W_{-0.5}^{+1}$	18	18	18	18	18	18	18	18	18	18
Hold down tape width	W_0				7min			•	12min	7min	12mi
Distance between the center of upper edge of carrier tape and sprocket hole	W ₁ ±0.5		9								
Distance between the upper edges of the carrier tape and the hold down tape	W_2					3n	nax				
Distance between the abscissa and the bottom of the components body	+0.75 H _{-0.5}	18.5	18.5	18.5	18.5	18.5	20.0	18.5	18.5	18.5	18.5
Distance between the abscissa and the reference plane of the components with crimped leads	H ₀ ±0.5					16	16			16	
Cut off position of defectives	L					11	max				
Max. lateral deviation of the component body vertical to the tape plane	△h					2 r	nax				
Max. deviation of the component body in the tape plane	△P					1.3	max				

Name		Specification Sheet – KM									
Version	01		Page	18							
	STANDARD MANUAL										

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

7. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-OA-072).

	Substances					
	Cadmium and cadmium compounds					
Heavy metals	Lead and lead compounds					
Heavy metals	Mercury and mercury compounds					
	Hexavalent chromium compounds					
	Polychlorinated biphenyls (PCB)					
Chloinated	Polychlorinated naphthalenes (PCN)					
organic	Polychlorinated terphenyls (PCT)					
compounds	Short-chain chlorinated paraffins(SCCP)					
	Other chlorinated organic compounds					
D : 1	Polybrominated biphenyls (PBB)					
Brominated .	Polybrominated diphenylethers(PBDE) (including					
organic	decabromodiphenyl ether[DecaBDE])					
compounds	Other brominated organic compounds					
Tributyltin comp	ounds(TBT)					
Triphenyltin com	apounds(TPT)					
Asbestos						
Specific azo com	pounds					
Formaldehyde						
Beryllium oxide						
Beryllium copp	er					
Specific phthalat	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)					
Hydrofluorocarbo	on (HFC), Perfluorocarbon (PFC)					
Perfluorooctane s	sulfonates (PFOS)					
Specific Benzotr	iazole					

Name		Specification Sheet – KM		
Version	01		Page	19
	STA	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

Attachment: Application Guidelines

1.Circuit Design

1.1 Operating Temperature and Frequency

Electrolytic capacitor electrical parameters are normally specified at 20 °C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.

- (1) Effects of operating temperature on electrical parameters
 - a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while $\tan \delta$ increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy

See the file: Life calculation of aluminum electrolytic capacitor

1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

Name		Specification Sheet – KM									
Version	01		Page	20							
	STANDARD MANUAL										

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements.

Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

1.4 Using Two or More Capacitors in Series or Parallel

(1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

1.5 Capacitor Mounting Considerations

(1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2) Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3) Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

Name		Specification Sheet – KM			
Version	01		Page	21	
STANDARD MANUAL					

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~ φ16mm;2mm minimum, φ18~ φ35mm;3mm minimum, φ40mm or greater;5mm minimum.

(5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

(6) Wiring Near the Pressure Relief Vent

Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite.

(7) Circuit Board patterns Under the Capacitor

Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short.

(8) Screw Terminal Capacitor Mounting

Do not orient the capacitor with the screw terminal side of the capacitor facing downwards.

Tighten the terminal and mounting bracket screws within the torque range specified in the specification.

1.6 Electrical Isolation of the Capacitor

Completely isolate the capacitor as follows.

- (1) Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths
- (2) Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
- 1.7 The Product endurance should take the sample as the standard.
- 1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.
- 1.9 Capacitor Sleeve

The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor.

The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.

CAUTION!

Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use.

- (1) Provide protection circuits and protection devices to allow safe failure modes.
- (2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.

Name		Specification Sheet – KM				
Version	01		Page	22		
STANDARD MANUAL						

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

2. Capacitor Handling Techniques

- 2.1 Considerations Before Using
- (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.
- (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about $1 \text{k} \Omega$.
- (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1k \Omega$.
- (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
- (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result.

2.2 Capacitor Insertion

- * (1) Verify the correct capacitance and rated voltage of the capacitor.
- * (2) Verify the correct polarity of the capacitor before inserting.
- * (3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
 - (4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor.

<u>For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.</u>

2.3 Manual Soldering

- (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less.
- (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
- (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.
- (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.

2.4 Flow Soldering

- (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.
- (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.

2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve.

For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Name		Specification Sheet – KM				
Version	01		Page	23		
STANDARD MANUAL						

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

2.6 Capacitor Handling after Solder

- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.

2.7 Circuit Board Cleaning

- * (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried.
 - The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- * (2) Avoid using the following solvent groups unless specifically allowed for in the specification;
- . Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.
- . Alkali solvents : could attack and dissolve the aluminum case.
- . Petroleum based solvents: deterioration of the rubber seal could result.
- . Xylene : deterioration of the rubber seal could result.
- Acetone : removal of the ink markings on the vinyl sleeve could result.
- * (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- * (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor.

Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers.

After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

Capacitors should not be stored or used in the following environments.

- * (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- * (2) Direct contact with water, salt water, or oil.
- * (3) High humidity conditions where water could condense on the capacitor.

Name		Specification Sheet – KM			
Version	01		Page	24	
STANDARD MANUAL					

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

- * (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- * (5) Exposure to ozone, radiation, or ultraviolet rays.
- * (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.

If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.

If electrolyte or gas is ingested by month, gargle with water.

If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail.

After one year, a capacitor should be reconditioned by applying rated voltage in series with a $1000\,\Omega$, current limiting resistor for a time period of 30 minutes .

If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

The capacitor shall be not use in the following condition:

- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

- * Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.
- * Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Name		Specification Sheet – KM				
Version	01		Page	25		
STANDARD MANUAL						